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potentials for addition of electrons to the heterocyclic ligand, 
even though the presence of a metal ion at N 5 and the sterically 
imposed bending of the isoalloxazine ring would be expected 
to increase the potential for addition of at least the first elec­
tron. 

Finally, this and related work25 now make it feasible to se­
lectively label either the isoalloxazine or adenine rings of the 
FAD coenzyme by addition of Ru(Il) under strictly anaerobic 
or redox catalytic conditions, respectively. It is hoped that 
coordination of Ru103 or Ru97 to FAD and related coenzymes 
at either of these sites will yield radiopharmaceuticals which 
may be of use as organ-imaging agents for diagnostic pur­
poses.41 
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Thermochemistry and Generation of Vinylketene 

Sir: 

Neutral vinylketene has so far eluded observation, although 
its possible formation as a red compound, stable up to —160 
0 C, was reported by Conia et al.1 in some flash thermolysis 
studies of spiro[2.3]hexan-4-ones. Vinylketene has been pos­
tulated as an intermediate in [2 + 2] cycloaddition reactions 
of cyclopentadiene with the dehydrochlorination product of 
trans-2-butenoyl and 3-butenoyl chloride2 and in other related 
systems.3 

We report here that vinylketene is obtained in high yield 
from the gas-phase thermal decomposition of the en-yne 
ether4-5 C H 2 = C H C = C O C H 2 C H 3 (I). 

I — C 4 H 4 0 + C2H4 

II 

Ionized vinylketene has been proposed6 as resulting from 
the electron impact induced losses of (i) H2O from crotonic 
acid (and some of its isomers), (ii) CH3OH from methyl cro-
tonate, and (iii) C2H4 from cyclohexen-2-one. The latter re­
action had an appearance energy (AE) which yielded a heat 
of formation, AZZf(C4H4O)+-= 194 ± 1 kcal mol - 1 , a value 
close to but significantly lower than that of the most stable 
isomer7 (furan)+-, A77f = 197 kcal mol - 1 . However, the 
metastable peak characteristics of the reacting and nonreacting 
(C4H4O)+- ions produced by i, ii, and iii (see Table I) show that 
they cannot have the structure of (furan)+-. 

The ionic heat of formation of 11 and the metastable char­
acteristics of ionized II are consistent with the structural as­
signment given to [C4H4O]+- ions derived from i, ii, and iii. 
Ethoxyethyne readily thermally decomposes to yield ketene 
and C 2H 4 . ' ' A similar 1,5-hydrogen shift in I would produce 
vinylketene and C2H4. When I is introduced into the ion source 
of an AEI-GEC MS902S mass spectrometer via a heated glass 
inlet system (T = 100 0 C), the highest mass in the resulting 
70-eV mass spectrum has m/z 68, [C4H4O]+- (67%). Promi­
nent ions are observed at m/z 42, [CH2CO]+- (14%); m/z 40, 
[C3H4]+- (37%); m/z 39, [C3H3]+ (78%); m/z 38. [C3H2]+-
(17%); m/z 37, [C 3 H] + (11%); m/z 28, [C2H4]+- (100%); m/z 
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Table I. Mass Spectral Characteristics of [C4H4O]+- Ions 

precursor molecule 

furan 
n'.y7ra«.v-crotonic acid 
3-butcnoic acid 
cyclopropanecarboxylic acid 
methyl crotonate 
cyclohexen-2-one 
vinylketene (11) 

I 
7-0.5' 

17 
25 
25 
25 
25 
33rf 

22 

metastabl 
oss of CO 

1 av 

87 
65 
65 
65 
65 
68 
60 

e peaks" 
rel abund; 

m/z 40 

100 
100 
100 
100 
100 
100 
100 

tnces 
m/z 

19 
5 
5 
5 
5 
6.5 
5 

42 

partia 
activation s 

m/z 39 

100 
100 
100 
100 
100 
100 
100 

1 70-eV collisional 
spectra * (major pc 

m/z 40 

17 
49 
53 
49 
67 
48 
45 

:aks) 
m/z 42 

12 
24 
26 
24 
25 
22 
21 

" Measured with an AEl-GEC MS902S mass spectrometer under conditions of good energy resolution.8 h Measured with a VG-Micromass 
ZAB 2F mass spectrometer. Acceleration voltage, 8000 V; collision gas, He. Peaks arising from unimolecular processes were separated from 
collision-induced processes by means of a voltage ( — 320 V) applied to the collision gas cell. Further experimental details are given elsewhere.9 

'' Kinetic energy releases (millielectronvolts) evaluated from the metastable peak widths at half height (7"o.s) and Tilv from the distribution 
of released energies.10 d The larger energy releases observed for this compound are due to a contribution from another [C4H4O]+- ion, [cy-
clobutenone]+- (To.5 - 38 meV, T.iv = 77 meV, which can be generated by loss of CO from 4-cyclopentenc-l ,3-dione). 

27, [C2H3J+ (52%); m/z 26, [C2H2]+- (48%); m/z 25 [C2H] + 

(9%). In marked contrast, the 70-eV mass spectrum of I, 
measured in an instrument wholly at room temperature,12 

showed an intense molecular ion for I, m/z 96, and major peaks 
at m/z 67, [C 4 H 3 O] + , and m/e 29, [C2H5]+, in addition to 
those at m/z 68, 42, 40, 39, 27, and 26. 

The low energy region of the He(I) photoelectron (PE) 
spectrum of I, measured at room temperature, contained a 
diffuse peak centered at 8.67 eV. This disappeared when the 
sample inlet system was heated to ~ 100 0 C, to be replaced by 
a sharp peak at a lower energy, 8.29 ± 0.05 eV, and another 
at 10.23 ± 0.05 eV. The AE of m/e 68, [C4H4O]+-, measured 
with energy selected electrons and now using a pyrolytic gas 
inlet system12 (T range, 350-650 °C) was 8.34 ± 0.05 eV. 
Within experimental error, this is the same value as the ion­
ization energy (IE) obtained from the PE spectrum; this result 
further supports the conclusion that a molecular species II, 
C4H4O, is being thermally generated from I. The magnitude 
of the IE for this C4H4O molecule is consistent with that for 
a conjugated ketene (cf. IE (ketene) = 9.6 eV,7 IE (phenyl-
ketene) = 8.17 eV13). Furthermore, IE values for other C4H4O 
isomers are significantly higher, e.g., IE (furan) = 8.88 eV,7 

IE (methylcyclopropenone) = 9.28 eV,6 IE (cyclobutenone) 
(estimated value) = 9.3 eV,6 IE (but-2-ynal and but-3-yn-
2-one) = 10.28 eV (HE(I) PE spectra, this work). These data 
effectively rule out C4H4O structures for II other than vinyl­
ketene and possibly its double-bond isomer buta-l,2-dienone. 
AHf for vinylketene molecular ion would be 195 ± 1 kcal 
mol - 1 (AH{ (vinylketene) = +4 kcal mol - 1 , estimated from 
AWf(CH2CO) = -14.6 kcal mol-1 ,7 A / / f ( C H 2 = C = C H 2 ) 
= +45.9 kcal mol-1,7 AHr ( C H 2 = C H C H = C = C H 2 = 
+64.9 kcal mol- ' u ) in agreement with AHr ([C4H4O]+-) 
from cyclohexen-2-one,6 1 9 4 + 1 kcal mol - 1 . Note the close 
similarity between the mass spectral characteristics for 
[C4H4O]+- derived from I, from cyclohexen-2-one, and from 
other species (see Table I) whose fragmentations have been 
proposed to generate [vinylketene]+-. The above estimated 
value for AHr (vinylketene) is supported by the AE for 
[C3H4]+- derived from II, 10.36 ± 0.05 eV. This value com­
bined with AHr (CO) = -26 .4 kcal mol- ' 7 and AHt 
( [ C H 2 = C = C H 2 ] + - ) = 269 kcal mol-1 7 also gives AH{ 

(C4H4O) = +4 kcal mol- ' , in good agreement with the above 
estimate. Similarly, comparing AHf ( C H 3 C H = C = C = C H 2 ) 
= +73.2 kcal mol-' 14 with the AH{data for ketene and allene, 
leads to AH( (buta-l,2-dienone) = +13 kcal mol - 1 . Such a 
heat of formation makes this molecular species quite incom­
patible with the above observations and so II can indeed con­
fidently be identified as vinylketene. It is a relatively stable 
species in gas phase; for example, although samples prepared 
in the heated MS902 inlet system initially gave a mass spec­

trum characteristic of I, ions at m/z 96, 67, etc., quickly dis­
appeared leaving a time-invarient mass spectrum15 of II as 
reported above. 
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Stereocontrolled Synthesis 
of the Prelog-Djerassi Lactone 

Sir: 

The Prelog-Djerassi lactone (1) is a key degradation product 
of the antibiotic methymycin,1 which retains the configuration2 

of the four chiral centers present in the segment comprising 
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